Self-Test cap $\{4,6\} 930$: Geometric Modeling

Name:

If you need to make simple, reasonable assumptions to arrive at an answer, state any such assumption.
An answer 'yes' or 'no' is worth 0 points if it does not explain the reasoning. Take this test twice.

- In red give answers without google and co.
- In black give answers after using any source (specify).

1 Coordinates

Consider the barycentric combination

$$
\mathbf{b}:=\sum_{j=0}^{2} \alpha_{j} \mathbf{b}_{j}, \quad\left(\alpha_{j}\right):=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),\left(\mathbf{b}_{j}\right):=\left(\left[\begin{array}{l}
1 \tag{1}\\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right) .
$$

- Draw the barycentric combination as the sum of a point and two vectors.
- Draw the convex hull of the three points

2 Affine Maps

- Construct a matrix that maps $\left(\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$ to $\left(\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.
- Prove that an affine map leaves barycentric combinations invariant.
- Determine an affine map that maps the points of Eq. (1) to the unit triangle $\left[\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right]$
- What (roughly) is the shear map for generating the slanted " r " in Fig 2.4 of the book?

3 Functions

Consider the functions

$$
\begin{align*}
& b_{i}: \mathbb{R} \rightarrow \mathbb{R}, \quad b_{i}(t):=\binom{3}{i}(1-t)^{3-i} t^{i}, \quad i=0, \ldots, 3 \tag{2}\\
& \text { where }\binom{n}{i}:=\frac{n!}{(n-i)!i!} \text { and } n!:=n \cdot \ldots \cdot 2 \cdot 1
\end{align*}
$$

- Prove that the functions b_{i} are polynomials.
- Prove that the polynomials b_{i} are linearly independent.

4 Bonus

A ratio-preserving map leaves the ratio of three collinear points constant. Prove: every ratio-preserving map is affine.

